Stretched-coordinate PMLs for Maxwell's equations in the discontinuous Galerkin time-domain method.

نویسندگان

  • Michael König
  • Christopher Prohm
  • Kurt Busch
  • Jens Niegemann
چکیده

The discontinuous Galerkin time-domain method (DGTD) is an emerging technique for the numerical simulation of time-dependent electromagnetic phenomena. For many applications it is necessary to model the infinite space which surrounds scatterers and sources. As a result, absorbing boundaries which mimic its properties play a key role in making DGTD a versatile tool for various kinds of systems. Popular techniques include the Silver-Mϋller boundary condition and uniaxial perfectly matched layers (UPMLs). We provide novel instructions for the implementation of stretched-coordinate perfectly matched layers in a discontinuous Galerkin framework and compare the performance of the three absorbers for a three-dimensional test system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Perfectly matched layers for convex truncated domains with discontinuous Galerkin time domain simulations

This paper deals with the design of perfectly matched layers (PMLs) for transient acoustic wave propagation in generally-shaped convex truncated domains. After reviewing key elements to derive PML equations for such domains, we present two time-dependent formulations for the pressure-velocity system. These formulations are obtained by using a complex coordinate stretching of the time-harmonic v...

متن کامل

A Discontinuous Galerkin Method for the Time-Domain Solution of 3D Maxwell's Equations on Non-Conforming Locally Refined Grids

A discontinuous Galerkin method is proposed for the numerical solution of the three-dimensional time-domain Maxwell's equations. A leap frog scheme is used for advancing in time. The scheme resulting can handle highly heterogeneous material, non diffusive and highly adaptable (it has been implemented on tetrahedral or hexahedral grids, including non-conforming). In some cases, some divergence c...

متن کامل

Optimal non-dissipative discontinuous Galerkin methods for Maxwell's equations in Drude metamaterials

Abstract. Simulation of electromagnetic wave propagation in metamaterials leads to more complicated time domain Maxwell’s equations than the standard Maxwell’s equations in free space. In this paper, we develop and analyze a non-dissipative discontinuous Galerkin (DG) method for solving the Maxwell’s equations in Drude metamaterials. Previous discontinuous Galerkin methods in the literature for...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Optics express

دوره 19 5  شماره 

صفحات  -

تاریخ انتشار 2011